SERVICE MANUAL

DVD VIDEO PLAYER

XV-S40BK/XV-S42SL XV-S45GD/XV-S30BK XV-E100SL

[MK2]

This service manual is a service manual of the
 model which changes a part of specification of the above-mentioned model which has already been put on the market. Please refer to the following page for details.

Area Suffix (XV-E100SL)
J \qquad
\qquad
\qquad

Contents

For this service manual 1-2
Precautions for service 1-7
Safety precautions 1-3
Disassembly method 1-8
Preventing static electricity 1-4 Adjustment method 1-17
Importance admistering Troubleshooting 1-21point on the safety1-5
Description of major ICs 1-25

Important for laser products ------------ 1-61-6

For this service manual

This service manual is a service manual of the model which changes a part of specification of the above－mentioned model which has already been put on the market．

＜When the label in figure is pasted in the main body＞

The specification is different from what the label of the same model does not paste because of the specification improvement，and refer to this service manual，please．
Please already refer to the issued service manual when the label is not pasted．

－サービスをされる方へ
 サービスマニユアルは炀当モデルの（WN）を参照してください

－Used only service dealer
Please refer to service manual of an applicable model［MK2］
GN30044－001A
＊Please refer to this service manual for the model to which this label is pasted．
＊Please refer to the service manual which has already been issued for the model to which this label is not pasted．
（one that there is no description named［MK2］in cover of service manual and Refer to the undermentioned table．）

■ For instructions

＊Both of the instructions are also common and refer to the service manual which has already been issued，please．

Service manual which has already been issued

Model name	Version	Issue
XV－S40BK／S30BK	ver．J，C	A0003 2001 February
XV－S42SL	ver．C ver．A，UG，US，UP，UW	A0003 2001 February A0014 2001 June
XV－S45GD	ver．J	A0003 2001 February
XV－E100SL	ver．J，C ver．US，UP，UB	A0010 2001 April A0014 2001 June

Safety Precautions

1. This design of this product contains special hardware and many circuits and components specially for safety purposes. For continued protection, no changes should be made to the original design unless authorized in writing by the manufacturer. Replacement parts must be identical to those used in the original circuits. Services should be performed by qualified personnel only.
2. Alterations of the design or circuitry of the product should not be made. Any design alterations of the product should not be made. Any design alterations or additions will void the manufacturers warranty and will further relieve the manufacture of responsibility for personal injury or property damage resulting therefrom.
3. Many electrical and mechanical parts in the products have special safety-related characteristics. These characteristics are often not evident from visual inspection nor can the protection afforded by them necessarily be obtained by using replacement components rated for higher voltage, wattage, etc. Replacement parts which have these special safety characteristics are identified in the Parts List of Service Manual. Electrical components having such features are identified by shading on the schematics and by (\AA) on the Parts List in the Service Manual. The use of a substitute replacement which does not have the same safety characteristics as the recommended replacement parts shown in the Parts List of Service Manual may create shock, fire, or other hazards.
4. The leads in the products are routed and dressed with ties, clamps, tubings, barriers and the like to be separated from live parts, high temperature parts, moving parts and/or sharp edges for the prevention of electric shock and fire hazard. When service is required, the original lead routing and dress should be observed, and it should be confirmed that they have been returned to normal, after reassembling.
5. Leakage current check (Electrical shock hazard testing)

After reassembling the product, always perform an isolation check on the exposed metal parts of the product (antenna terminals, knobs, metal cabinet, screw heads, headphone jack, control shafts, etc.) to be sure the product is safe to operate without danger of electrical shock.
Do not use a line isolation transformer during this check.

- Plug the AC line cord directly into the AC outlet. Using a "Leakage Current Tester", measure the leakage current from each exposed metal parts of the cabinet, particularly any exposed metal part having a return path to the chassis, to a known good earth ground. Any leakage current must not exceed 0.5 mA AC (r.m.s.).
- Alternate check method

Plug the AC line cord directly into the AC outlet. Use an AC voltmeter having, 1,000 ohms per volt or more sensitivity in the following manner. Connect a $1,500 \Omega 10 \mathrm{~W}$ resistor paralleled by a $0.15 \mu \mathrm{~F}$ AC-type capacitor between an exposed metal part and a known good earth ground. Measure the AC voltage across the resistor with the AC voltmeter.
Move the resistor connection to each exposed metal part, particularly any exposed metal part having a return path to the chassis, and measure the AC voltage across the resistor. Now, reverse the plug in the AC outlet and repeat each measurement. Voltage measured any must not exceed 0.75 V AC (r.m.s.). This corresponds to 0.5 mA AC (r.m.s.).

Warning

1. This equipment has been designed and manufactured to meet international safety standards. 2. It is the legal responsibility of the repairer to ensure that these safety standards are maintained.
2. Repairs must be made in accordance with the relevant safety standards.
3. It is essential that safety critical components are replaced by approved parts.
4. If mains voltage selector is provided, check setting for local voltage.

CAUTION

[^0]
Preventing static electricity

Electrostatic discharge (ESD), which occurs when static electricity stored in the body, fabric, etc. is discharged, can destroy the laser diode in the traverse unit (optical pickup). Take care to prevent this when performing repairs.

1.1. Grounding to prevent damage by static electricity

Static electricity in the work area can destroy the optical pickup (laser diode) in devices such as DVD players. Be careful to use proper grounding in the area where repairs are being performed.

1.1.1. Ground the workbench

1. Ground the workbench by laying conductive material (such as a conductive sheet) or an iron plate over it before placing the traverse unit (optical pickup) on it.

1.1.2. Ground yourself

1. Use an anti-static wrist strap to release any static electricity built up in your body.

(conductive sheet) or iron plate

1.1.3. Handling the optical pickup

1. In order to maintain quality during transport and before installation, both sides of the laser diode on the replacement optical pickup are shorted. After replacement, return the shorted parts to their original condition. (Refer to the text.)
2. Do not use a tester to check the condition of the laser diode in the optical pickup. The tester's internal power source can easily destroy the laser diode.

1.2. Handling the traverse unit (optical pickup)

1. Do not subject the traverse unit (optical pickup) to strong shocks, as it is a sensitive, complex unit.
2. Cut off the shorted part of the flexible cable using nippers, etc. after replacing the optical pickup. For specific details, refer to the replacement procedure in the text. Remove the anti-static pin when replacing the traverse unit. Be careful not to take too long a time when attaching it to the connector.
3. Handle the flexible cable carefully as it may break when subjected to strong force.
4. It is not possible to adjust the semi-fixed resistor that adjusts the laser power. Do not turn it

Importance admistering point on the safety

< For only version J,C >

Full Fuse Replacement Marking

Graphic symbol mark
(This symbol means fast blow type fuse.)

should be read as follows ;
FUSE CAUTION
FOR CONTINUED PROTECTION AGAINST RISK OF FIRE, REPLACE ONLY WITH SAME TYPE and rating of fuses;

Marquage Pour Le Remplacement Complet De Fusible

Le symbole graphique (Ce symbole signifie fusible de type á fusion rapide.)

doit être interprété comme suit ;
PRECAUTIONS SUR LES FUSIBLES
POUR UNE PROTECTION CONTINUE CONTRE DES RISQUES D'INCENDIE, REMPLACER SEULEMENT PAR UN FUSIBLE DU MEME TYPE ;

Important for laser products

< For only europe >

1.CLASS 1 LASER PRODUCT

2.DANGER : Invisible laser radiation when open and inter lock failed or defeated. Avoid direct exposure to beam.
3.CAUTION : There are no serviceable parts inside the Laser Unit. Do not disassemble the Laser Unit. Replace the complete Laser Unit if it malfunctions.
4.CAUTION : The compact disc player uses invisible laser radiation and is equipped with safety switches which prevent emission of radiation when the drawer is open and the safety interlocks have failed or are de feated. It is dangerous to defeat the safety switches.
5.CAUTION : If safety switches malfunction, the laser is able to function.
6.CAUTION : Use of controls, adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

CAUTION Please use enough caution not to

 see the beam directly or touch it in case of an adjustment or operation check.VARNING : Osynlig laserstrålning är denna del är öppnad
och spårren är urkopplad. Betrakta ej strålen.

VARO \quad| : Avattaessa ja suojalukitus ohitettaessa olet |
| :--- |
| |
| |
| |
| |
| alttiina näkymättömälle lasersäteilylle.Älä katso |
| säteeseen. |

ADVARSEL : Usynlig laserstråling ved åbning, når
sikkerhedsafbrydere er ude af funktion. Undgå udsættelse for stråling.
ADVARSEL : Usynlig laserstråling ved åpning,når sikkerhetsbryteren er avslott. unngå utsettelse for stråling.

REPRODUCTION AND POSITION OF LABEL and PRINT
WARNING LABEL and PRINT

Precautions for Service

Handling of Traverse Unit and Laser Pickup

1. Do not touch any peripheral element of the pickup or the actuator.
2. The traverse unit and the pickup are precision devices and therefore must not be subjected to strong shock.
3. Do not use a tester to examine the laser diode. (The diode can easily be destroyed by the internal power supply of the tester.)
4. To replace the traverse unit, pull out the metal short pin for protection from charging.
5. When replacing the pickup, after mounting a new pickup, remove the solder on the short land which is provided at the center of the flexible wire to open the circuit.
6. Half-fixed resistors for laser power adjustment are adjusted in pairs at shipment to match the characteristics of the optical block.
Do not change the setting of these half-fixed resistors for laser power adjustment.

Destruction of Traverse Unit and Laser Pickup by Static Electricity

Laser diodes are easily destroyed by static electricity charged on clothing or the human body. Before repairing peripheral elements of the traverse unit or pickup, be sure to take the following electrostatic protection:

1. Wear an antistatic wrist wrap.
2. With a conductive sheet or a steel plate on the workbench on which the traverse unit or the pick up is to be repaired, ground the sheet or the plate.
3. After removing the flexible wire from the connector (CN101), short-circuit the flexible wire by the metal clip.
4. Short-circuit the laser diode by soldering the land which is provided at the center of the flexible wire for the pickup.
After completing the repair, remove the solder to open the circuit.

Please refer to "Fig.4" of "Disassembly method" for details.

Disassembly method

There is a part different from the photograph according to the model and the destination though explains this disassembly method by using XV-E100SL.

<Main body>

- Removing the top cover (see Fig.1)

1.Remove the two screws \mathbf{A} attaching the top cover on both sides of the body.
2.Remove the three screws \mathbf{B} attaching the top cover on the back of the body.
3.Remove the top cover from the body by lifting the rear part of the top cover.

ATTENTION: Do not break the front panel tab fitted to the top cover.
\square Removing the mechanism assembly (see Fig.2,3)

* Prior to performing the following procedure, remove the top cover.
* There is no need to remove the front panel assembly.

1. Remove the three screws \mathbf{C} attaching the mechanism assembly on the bottom chassis.
2. Remove the two screws \mathbf{F} attaching the lug wire and main board on the bottom chassis.
3. The servo control board is removed from the connector CN961 and CN701 connected with the main board respectively.
4. Remove the mechanism assembly by lifting the rear part of the mechanism assembly.
\square Removing the servo control board (see Fig.4)

Fig. 2

* Prior to performing the following procedure, remove the top cover and mechanism assembly.
1.Disconnect the card wire from connector CN201 and CN202 on the servo control board respectively.
2.Disconnect the flexible wire from connector CN101 on the servo control board from pick-up.

< ATTENTION >

At this time, please extract the wire after short-circuited of two places on the wire in part a with solder. Please remove the solder two places of part a after connecting the wire with CN101 when reassembling.

[^1]

Fig. 4

- Removing the rear panel (see Fig.5)

*Prior to performing the following procedure, remove the top cover.
1.Remove the eight screws \mathbf{D} attaching the rear panel on the back of the body.

* As for the screw \mathbf{D}, the number and the position are different according to the destination.

■ Removing the front panel assembly (see Fig.6,7)

* Prior to performing the following procedure, remove the top cover.
* There is no need to remove the mechanism assembly.
1.Remove the one screw \mathbf{E} attaching the front panel assembly on the bottom chassis.
2.Disconnect the wire from CN702 and CN703 on the

Fig. 5 main board respectively.
3. Hook \mathbf{c} and \mathbf{d} are removed respectively, and the front panel assembly is removed.

Fig. 7

■ Removing the main board (see Fig.8)

* Prior to performing the following procedure, remove the top cover, mechanism assembly and rear panel.
1.Disconnect the wire from CN702 and CN703 on the main board respectively.

2. Remove the four screws F attaching the main board on the bottom chassis.

<Loading assembly section>

■Removing the clamper assembly

(See Fig.1)

1. Remove the four screws \mathbf{A} attaching the clamper assembly.
2. Move the clamper in the direction of the arrow to release the two joints a on both sides.

ATTENTION: When reattaching, fit the clamper to the two joints a.

Removing the tray (See Fig. 2 and 3)

Fig. 1

- Prior to performing the following procedure, remove the clamper assembly.

1. Push \mathbf{b} of the slide cam into the slot on the left side of the loading base until it stops.
2. Draw out the tray toward the front.

ATTENTION: Before reattaching the tray, slide the part \mathbf{c} of the slide cam to the right as shown in Fig.3.

Fig. 2

Fig. 3

Removing the traverse mechanism assembly (See Fig. 4 and 5)

- Prior to performing the following procedure, remove the clamper assembly and the tray.

1. Remove the four screws \mathbf{B} attaching the traverse mechanism assembly.

ATTENTION: Before reattaching the traverse mechanism assembly, pass the card wire extending from the spindle motor board through the notch \mathbf{d} of the elevator.

-Removing the elevator (See Fig. 6 and 7)

- Prior to performing the following procedure, remove the clamper assembly, the tray and the traverse mechanism assembly.

1. Extend each bar \mathbf{e} inside of the loading base outward and detach the elevator shaft.

Fig. 4

Fig. 5

Fig. 7

■Removing the motor assembly

(See Fig. 8 and 9)

- Prior to performing the following procedure, remove the clamper assembly, the tray, the traverse mechanism assembly and the elevator.

1. Remove the belt from the pulley.
2. Remove the screw \mathbf{C} attaching the motor assembly.
3. Turn over the body and remove the screw \mathbf{D} attaching the motor assembly.
4. Release the two tabs \mathbf{g} retaining the motor board.

Fig. 8

Fig. 9

Fig. 10

- Removing the Idle gear / pulley gear / middle gear / slide cam (See Fig. 10 to 12)

- Prior to performing the following procedure, remove the clamper assembly, the tray, the traverse mechanism assembly, the elevator and the motor assembly.

1. Press the two tabs \mathbf{h} inward and pull out the idle gear.
2. Remove the screw \mathbf{E} attaching the pulley gear bracket. Slide the pulley gear bracket in the direction of the arrow and pull out the pulley gear.
3. Slide the slide cam in the direction of the arrow to release the two joints \mathbf{i} and remove upward.
4. Remove the middle gear.

Fig. 11

Fig. 12

<Traverse mechanism assembly section>

 \square Removing the feed motor assembly (See Fig.13)1. Unsolder the two soldering \mathbf{j} on the spindle motor board.
2. Remove the two screws \mathbf{F} attaching the feed motor assembly.

Removing the feed motor

(See Fig. 13 to 15)

- Prior to performing the following procedure, remove the feed motor assembly.

1. Remove the screw \mathbf{G} attaching the thrust spring.

ATTENTION: When reattaching the thrust spring, make sure that the thrust spring presses the feed gear (M) and the feed gear (E) reasonably.
2. Remove the feed gear (M).
3. Pull out the feed gear (E) and the lead screw.
4. Remove the two screws \mathbf{H} attaching the feed motor.

ATTENTION: When reattaching, pass the two cables extending from the feed motor through the notch \mathbf{k} of the feed holder as shown in Fig. 13.

Fig. 13

Fig. 14

Fig. 15

Removing the pickup (See Fig. 16 and 17)

1. Remove the screw I attaching the T spring (S) and the shaft holder. Remove also the plate.

ATTENTION: When reattaching, make sure that the T spring (S) presses the shaft.
2. Pull out the part I of the shaft upward. Move the part \mathbf{m} in the direction of the arrow and detach from the spindle base.
3. Disengage the joint \mathbf{n} of the pickup and the shaft in the direction of the arrow.
4. Pull out the shaft from the pickup.
5. Remove the two screws \mathbf{J} attaching the actuator.
6. Disengage the joint of the actuator and the lead spring. Pull out the lead spring.

The spring must be under the shaft when you install pick-up.

■ Removing the shaft holder / shaft

(See Fig.18)

1. Remove the screw \mathbf{K} attaching the shaft holder.
2. Remove the shaft.

Fig. 16

Fig. 17

Fig. 18

■ Removing the spindle motor assembly

(See Fig. 19 to 21)

1. Remove the three screws \mathbf{L} attaching the spindle motor on the bottom of the mechanism base.

ATTENTION: When reattaching, pass the card wire extending from the spindle motor board through the notch of the spindle base.
2. Remove the three screws \mathbf{M} attaching the spindle base.

Fig. 19

Fig. 20

Fig. 21

Adjustment method

(1) Initialization method

If microprocessor (IC401,IC402,IC403) or pick-up is replaces, initialize the DVD player in the following matter

1) Take out the disc and close the tray.
2) Unplug the power plug.
3)Insert power plug into outlet while pressing both "PLAY" button and "OPEN/CLOSE" button.
4)FL Display indicate "TEST $* * \quad ¥$ ".$\quad * *$:Version, $¥:$ Region code
5)Press "3D-PHONIC" button of remote controller. and EEPROM initialize start.
6)When indicate "DTS" on the display, initialize finishes.
7)The power is turned OFF, and Unplug the power plug.

(2) Display of "Laser current value" and "Jitter value"

"Laser current value" and "Jitter value" are displayed on the FL display by the undermentioned method. Please refer to the failure diagnosis.
1)Take out the disc and close the tray.
2) Unplug the power plug.
3)Insert power plug into outlet while pressing both "PLAY" button and "OPEN/CLOSE" button.
4)FL Display indicate "TEST $* * \quad ¥$ " $\quad * *$:Version, $¥$:Region code
5)Press the "OPEN/CLOSE" button to move the tray outward.

Put the test disc (VT-501) on the tray and press "OPEN/CLOSE" button.
The tray should move inward (Note:Don't push to close the tray directly by hand etc.)
6)Press the "PLAY" button.
7)The laser current value and the jitter value is displayed on the FL indicator as follows.

FL Display		* The test mode is canceled when the power is turned off.
0040	3978	
Laser current value	Jitter value	

For Laser current value

The laser current value becomes 40 mA for the above-mentioned.
Becomes a test mode by doing above-mentioned procedure 1) - 4). Afterwards, the laser current value can be switched by pushing the button to remote controller without turning on the disk.

Remote control "4" button --- Laser of CD *Returns to a usual test mode by the Remote control "5" button --- Laser of DVD thing to push the "STOP" button of remote controller.

If the laser current value is 64 mA or less, it is roughly good. There is a possibility to which pick-up is deteriorated, and exchange pick-up, please when there are 65 mA or more laser current value.

XV-S30BK/XV-E100SL

For Jitter value

The jitter value is displayed on the FL display referring to the previous page.
The jitter value is displayed by the hexadecimal number.
In the following cases, please "Flap adjustment of the pick-up guide shaft" referring to the following page.
Before using the TEST disc VT-501, careful check it if there is neither damage nor dirt on the read surface.
< In the following cases, please adjustment >

* When you exchange the pick-up
* When you exchange the spindle motor
* When the reading accuracy of the signal is bad (There is a block noise in the screen etc..)

(3) Flap adjustment of the pick-up guide shaft

<Tool list for adjustment>

* Hex wrench for adjustment

Off-the-shelf (1.3mm)

* Test disc

VT-501 or VT-502

* Stud (four pieces set)

Parts No. : JIGXVS40 (One is not used though there are four.)

\square

* Assistance board and extension cord

Parts No. : EXTXVS40MK2CB

Parts No. : EXTXVS40CB

Parts No. : EXTXV521CB

<Connection diagram>

To CN701 of main board

To CN503 of servo control board

To CN502 of servo control board
<Adjustment preparation>
1.The mechanism assembly is made in the state from the main body from which is detached referring to the disassembly method.
2.Three studs are installed in the mechanism assembly respectively.
3.The servo control board is removed from the mechanism assembly, and puts into the state set up as shown in figure. (Each wire connected by the servo control board this time leaves the connection maintained.) Between shaft and hook of mechanism assembly of figure Board is put.
4.The extension cord is inserted in the connector of the assistance board respectively. The main board is connected with the servo control board as shown in figure.

<Adjustment>

1.Puts into the state to display the jitter value on the FL display referring to "Display of the jitter value".
2. The adjustment screw under the traverse mechanism is turned with hex wrench, and matches so that the jitter value displayed on the FL display may become "maximum" value.

<POINT>
1.Turns in the forward or the opposite direction, and makes to the position where the jitter value is good the half rotation of adjustment screw a and b (180 degrees) respectively.
2.Afterwards, adjustment screw b and c are turned in the same way, and makes to the best position.

Troubleshooting

Servo volume

XV-S30BK/XV-E100SL

Check points for each error

(1) Spindle start error
1.Defective spindle motor
*Are there several ohms resistance between each pin of CN201 "5-6","6-7","5-7"?
(The power supply is turned off and measured.)
*Is the sign wave of about 100 mV p-p in the voltage had from each terminal?
[CN201"9"(H1-),"10"(H1+),"11"(H2-),"12"(H2+),"13"(H3-),"14"(H3+)]
2.Defective spindle motor driver (IC251)
*Has motor drive voltage of a sine wave or a rectangular wave gone out to each terminal(SM1~3) of CN201" $5,6,7$ " and IC251" $2,4,7$ "?
*Is FG pulse output from the terminal of IC251" 24 " (FG) according to the rotation of the motor?
*Is it "L(about 0.9 V$)$ " while terminal of IC251"15"(VH) is rotating the motor?
3.Has the control signal come from servo IC or the microcomputer?
*Is it "L" while the terminal of IC251"18"(SBRK) is operating?
Is it " H " while the terminal of IC251"23"(/SPMUTE) is operating?
*Is the control signal input to the terminal of IC251"22"(EC)? (changes from VHALF voltage while the motor is working.)
*Is the VHALF voltage input to the terminal of IC251"21"(ECR)?
4.Is the FG signal input to the servo IC?
*Is FG pulse input to the terminal of IC301"69"(FG) according to the rotation of the motor?
(2) Disc Detection, Distinction error (no disc, no RFENV)

* Laser is defective.
* Front End Processor is defective (IC101).
* APC circuit is defective. --- Q101,Q102.
* Pattern is defective. --- Lines for CN101 - All patterns which relate to pick-up and patterns between IC101
* IC101 --- For signal from IC101 to IC301, is signal output from IC101 "20" (ASOUT) and IC101 "41"(RFENV) and IC101 "22" (FEOUT)?
(3) Traverse movement NG
1.Defective traverse driver
*Has the voltage come between terminal of CN101 "1" and "2" ?
2.Defective BTL driver (IC201)
*Has the motor drive voltage gone out to IC201"17" or "18"?
3.Has the control signal come from servo IC or the microcomputer?
*Is it "H" while the terminal of IC201"9"(STBY1) ?
*TRSDRV Is the signal input? (IC301 "67")
4.TRVSW is the signal input from microcomputer? (IC401 "46")
(4) Focus ON NG
* Is FE output? --- Pattern, IC101
* Is FODRV signal sent ? (R209) --- Pattern, IC301 "115"
* Is driving voltage sent?

IC201 "13", "14" --- If NG, pattern, driver, mechanical unit .

* Mechanical unit is defective.

(5) Tracking ON NG

* When the tracking loop cannot be drawn in, TE shape of waves does not settle.
* Mechanical unit is defective.

Because the self adjustment cannot be normally adjusted, the thing which cannot be normally drawn in is thought.

* Periphery of driver (IC201)

Constant or IC it self is defective.

* Servo IC (IC301)

When improperly adjusted due to defective IC.
(6) Spindle CLV NG

* IC101 -- "35"(RF OUT), "30"(ARF-), "31(ARF+).
* Does not the input or the output of driver's spindle signal do the grip?
* Has the tracking been turned on?
* Spindle motor and driver is defective.
* Additionally, "IC101 and IC301" and "Mechanism is defective(jitter)", etc. are thought.
(7) Address read NG
* Besides, the undermentioned cause is thought though specific of the cause is difficult because various factors are thought.

Mechanism is defective. (jitter)
IC301, IC401.
The disc is dirty or the wound has adhered.
(8) Between layers jump NG (double-layer disc only)

Mechanism defective
Defect of driver's IC(IC201)
Defect of servo control IC(IC301)

XV-S30BK/XV-E100SL

(9) Neither picture nor sound is output
1.It is not possible to search
*Has the tracking been turned on?
*To "(5) Tracking ON NG" in "Check points for each error" when the tracking is not normal.
*Is the feed operation normal?
To "(3) traverse movement NG" in "Check points for each error" when it is not normal.
Are not there caught of the feeding mechanism etc?
(10) Picture is distorted or abnormal sound occurs at intervals of several seconds.

Is the feed operation normal?
Are not there caught of the feeding mechanism etc?

(11) Others

The image is sometimes blocked, and the image stops. The image is blocked when going to outer though it is normal in surroundings in the disk and the stopping symptom increases.

There is a possibility with bad jitter value for such a symptom.
(12) CD During normal playback operation
a) Is TOC reading normal?

Displays total time for CD-DA.
Shifts to double-speed
mode for V-CD.
$\underset{\text { b)Playback possible? }}{\stackrel{\mid}{\text { YES }}} \xrightarrow{\mathrm{NO}}$
*--:-- is displayed during FL search.
According to [It is not possible to search] for DVD(9), check the feed and tracking systems.
*No sound is output although the time is displayed.(CA-DA) DAC, etc, other than servo.
*The passage of time is not stable, or picture is abnormal.(V-CD)
*The wound of the disc and dirt are confirmed.

Description of major ICs

AN8703FH-V (IC101) : Frontend processor

1.Pin layout

64	~ 49	
1		48
2		2
16		33
17		~ 32

2.Pin function

Pin No.	Symbol	I/O	Description	Pin No.	Symbol	I/O	Description
1	LPC1	1	Laser input terminal (DVD)	34	RFDIFO	-	Non connect
2	LPC01	O	Laser drive signal output terminal (DVD)	35	RFOUT	-	Connect to TP103
3	LPC2	1	Laser input terminal (CD)	36	VCC3	-	Power supply terminal 3.3V
4	LPC02	O	Laser drive signal output terminal (CD)	37	RFC	O	Filter for RF delay correction AMP.
5	VFOSHORT	1	VFOSHORT control terminal	38	DCRF	0	All addition amplifier capacitor terminal
6	TBAL	1	Tracking balance control terminal	39	OFTR	O	OFTR output terminal
7	FBAL	1	Focus balance control terminal	40	BDO	O	BDO output terminal
8	POFLT	O	Track detection threshold level terminal	41	RFENV	O	RF envelope output terminal
9	DTRD	I	Data slice part data read signal input terminal (For RAM)	42	BOTTOM	O	Bottom envelope detection filter terminal
				43	PEAK	O	Peak envelope detection filter terminal
10	IDGT	1	Data slice part address part gate signal input terminal(For RAM)	44	AGCG	O	AGC amplifier gain control terminal
				45	AGCO	O	AGC amplifier level control terminal
11	STANDBY	1	Standby mode control terminal	46	TESTSG	1	TEST signal input terminal
12	SEN	1	SEN(Serial data input terminal)	47	RFINP	1	RF signal positive input terminal
13	SCK	1	SCK(Serial data input terminal)	48	RFINN	1	RF signal negative input terminal
14	STDI	1	STDI(Serial data input terminal)	49	VIN5	1	Internal four-partition (CD) RF input 1
15	RSCL	1	Standard electric current terminal	50	VIN6	1	Internal four-partition (CD) RF input 2
16	JLINE	I	Electric current setting terminal of JLine	51	VIN7	-	Internal four-partition (CD) RF input 3
17	TEN	1	Reversing input terminal of tracking error output AMP.	52	VIN8	-	Internal four-partition (CD) RF input 4
18	TEOUT	O	Tracking error signal output terminal	53	VIN9	1	External two-partition (DVD) RF input 2
19	AGCBAL	1	Offset adjusting terminal 1	54	VIN10	1	External two-partition (DVD) RF input 1
20	ASOUT	O	Full adder signal output terminal	55	VCC1	-	Power supply terminal 5V
21	FEN	1	Focus error output amplifier reversing input terminal	56	VREF1	O	VREF1 voltage output terminal
22	FEOUT	O	Focus error signal output terminal	57	VIN1	1	Internal four-partition (DVD) RF input 1
23	AGCOFST	I	Offset adjusting terminal 2				
24	MON	-	Non connect	58	VIN2	1	Internal four-partition (DVD) RF input 2
25	AGCLVL	O	Output amplitude adjustment for DRC				
26	GND2	-	Connect to GND	59	VIN3	1	Internal four-partition (DVD) RF input 3
27	VREF2	O	VREF2 voltage output terminal				
28	VCC2	-	Power supply terminal 5V	60	VIN4	1	Internal four-partition (DVD) RF input 4
29	VHALF	O	VHALF voltage output terminal				
30	DFLTON	O	Reversing output terminal of filter AMP.	61	GND1	-	Connect to GND
31	DFLTOP	O	Filter AMP. output terminal	62	VIN11	1	3 beam sub input terminal 2 (CD)
32	DCFLT	1	Capacity connection terminal for filter output	63	VIN12	1	3 beam sub input terminal 1 (CD)
33	GND3	-	Connect to GND	64	HDTYPE	0	HD Type selection

BA5983FM-X (IC201) : 4CH Driver
1.Block diagram

2. Pin function

Pin No.	Symbol	I/O	Description	Pin No.	Symbol	I/O	
1	BIAS IN	I	Input for Bias-amplifier	15	VO4(+)	O	Non inverted output of CH4
2	OPIN1(+)	I	Non inverting input for CH1 OP-AMP	16	VO4(-)	O	Inverted output of CH4
3	OPIN1(-)	I	Inverting input for CH1 OP-AMP	17	VO3(+)	O	Non inverted output of CH3
4	OPOUT1	O	Output for CH1 OP-AMP	18	VO3(-)	O	Inverted output of CH3
5	OPIN2(+)	I	Non inverting input for CH2 OP-AMP	19	PowVcc2	-	Vcc for CH3/4 power block
6	OPIN2(-)	I	Inverting input for CH2 OP-AMP	20	STBY2	I	Input for Ch4 stand by control
7	OPOUT2	O	Output for CH2 OP-AMP	21	GND	-	Substrate ground
8	GND	-	Substrate ground	22	OPOUT3	O	Output for CH3 OP-AMP
9	STBY1	I	Input for CH1/2/3 stand by control	23	OPIN3(-)	I	Inverting input for CH3 OP-AMP
10	PowVcc1	-	Vcc for CH1/2 power block	24	OPIN3(+)	I	Non inverting input for CH3 OP-AMP
11	VO2(-)	O	Inverted output of CH2	25	OPOUT4	O	Output for CH4 OP-AMP
12	VO2(+)	O	Non inverted output of CH2	26	OPIN4(-)	I	Inverting input for CH4 OP-AMP
13	VO1(-)	O	Inverted output of CH1	27	OPIN4(+)	I	Non inverting input for CH4 OP-AMP
14	VO1(+)	O	Non inverted output of CH1	28	PreVcc	-	Vcc for pre block

74VHC00MTC-X (IC455,IC503) : 2-input nand gate

1.Pin layout

2.Truth table

A	B	Y
L	L	H
L	H	H
H	L	H
H	H	L

L: High impedance

■ BA6664FM－X（IC251）：3Phase Motor Driver
1．Pin layout

مanana		
	¢	
－～のナんロイ	®	
OMO 영영		

2．Block diagram

3. Pin function

Pin No.	Symbol	I/O	
1	NC	-	Non connect
2	A3	O	Output 3 for spindle motor
3	NC	-	Non connect
4	A2	O	Output 2 for spindle motor
5	NC	-	Non connect
6	NC	-	Non connect
7	A1	O	Output 1 for spindle motor
8	GND	-	Connect to ground
9	H1+	I	Positive input for hall input AMP 1
10	H1-	I	Negative input for hall input AMP 2
11	H2+	I	Positive input for hall input AMP 2
12	H2-	I	Negative input for hall input AMP 2
13	H3+	I	Positive input for hall input AMP 3
14	H3-	I	Negative input for hall input AMP 3
15	VH	I	Hall bias terminal
16	BR	-	Non connect
17	CNF	-	Capacitor connection pin for phase compensation
18	SB	I	Short brake terminal
19	FG2	-	Non connect
20	FR	-	Non connect
21	ECR	I	Torque control standard voltage input terminal
22	EC	I	Torque control voltage input terminal
23	PS	O	Start/stop switch (power save terminal)
24	FG	O	FG signal output terminal
25	VCC	-	Power supply for signal division
26	GSW	O	Gain switch
27	VM	-	Power supply for driver division
28	RNF	O	Resistance connection pin for output current sense
29		-	Connect to ground
30		-	Connect to ground

74VHC08SJ-X(IC411) / 74VHCT08ASJ-X(IC412):2-input AND gate

2.Truth table

G	A	Y
L	L	Z
L	H	Z
H	L	Z
H	H	L

K4S641632E-TC75 (IC504) :CMOS SDRAM

1.Pin layout

2.Block diagram

3.Pin functions

Symbol	
CLK	System clock
$\overline{\mathrm{CS}}$	Chip select
CKE	Clock enable
A0~A11	address
BS0,1	Bank address strobe
$\overline{\mathrm{RAS}}$	Row address strobe
$\overline{\mathrm{CAS}}$	column address strobe
$\overline{\mathrm{WE}}$	Write enable
LDQM	Data input/output mask
DQ0~15	Data input/output
Vcc/Vss	Power supply/ground
Vccq/Vssq	Data output power/ground
N.C	Non connect

MN101C35DGN(IC701):System controller

Pin function

Pin No.	Symbol	I/O	Description
1	DDATA	0	DAC control data
2	DCLK	0	DAC control clock
3	DACOCS	0	DAC control chip select
4~7	DI/DO/CS/SK	-	Not use
8	VDD	-	Power supply +B 5V
9	OSC2	0	Oscillation terminal 8MHz
10	OSC1	1	Oscillation terminal 8MHz
11	VSS	-	Connect to ground
12	XI	-	Unused, Connect with ground
13	XO	-	Non connect
14	MMOD	-	Connect to ground
15	VREF-	-	Connect to ground
16	POWER SW	1	Key input (power)
17	NTSEL	I	NTSC/PAL switch input
18	RGB/YC SW	1	RGB/YC Switch input
19	S/COMPO	1	S/COMPONENT Switch input
20	AINO	1	Key input (S831~S835)
21	AIN2	1	Key input (open/close)
22	TEST0	-	Not used
23	TEST1	-	Not used
24	VREF+	-	Power supply +B 5V
25	RGBSEL	0	RGB select control (H:RGB L:other)
26	RESET	I	Reset input
27	AVCO	0	AV COMPULINK output
28	AVCI	1	AV COMPULINK input
29	POWERON	0	Power ON output
30	TCLOSE	0	Tray close control output
31	TOPEN	0	Tray open control output
32	/LMMUTE	0	Tray muting output (L:muting)
33	SWOPEN	I	Detection switch of tray open/close (L:open/close)
34	SWUPDN	1	Detection switch of traverse mechanism up/down (H:UP L:DOWN)
35	REMO	1	Remote control interruption
36	NC	-	Non connect
37	REQ	1	Communication between unit microcomputers request
38	NC	-	Non connect
39	S2UDT	0	Communication between unit microcomputers DATA output
40	U2SDT	I	Communication between unit microcomputers DATA input
41	SCLK	0	Communication between unit microcomputers CLK
42	BUSY	0	Communication between unit microcomputers BUSY
43	CPURST	0	Unit microcomputers reset
44	NC	-	Non connect
45	VS3	0	S3 control (H:standby L:power ON)
46	VS1	0	S1 control
47	MUTE	0	Muting output
48	STANDBYIND	0	LED control signal output (standby)
49~51	NC	-	Non connect
52~64	13G~1G	0	FL grid control signal output
65~88	S24~S1	0	FL segment control signal output
89~99	NC	-	Non connect
100	VPP	-	-VDISP (apply -35V)

■ MN102L62GGY (IC401) : Unit CPU

Pin function

Pin No.	Symbol	I/O	Function	Pin No.	Symbol	I/O	Function
1	WAIT	1	Micon wait signal input	51	-	-	Connect to TP406
2	RE	0	Read enable	52	-	-	Connect to TP405
3	SPMUTE	0	Spindle muting output to IC251	53	P85/TM5IO	-	Connect to TP404
4	WEN	0	Write enable	54	VDD	-	Power supply
5	HDTYPE	O	HD Type selection	55	-	-	Connect to TP403
6	CS1	0	Chip select for ODC	56	FEPEN	O	Serial enable signal for FEP
7	CS2	0	Chip select for ZIVA	57	SLEEP	0	Standby signal for FEP
8	CS3	0	Chip select for outer ROM	58	-	-	Connect to TP402
9	DRVMUTE	0	Driver mute	59	BUSY	1	Communication busy
10	SBRK	0	Short brake terminal	60	REQ	0	Communication request
11	LSIRST	O	LSI reset	61	VSS	-	Ground
12	WORD	1	Bus selection input	62	EPCS	0	EEPROM chip select
13	A0	0	Address bus 0 for CPU	63	EPSK	0	EEPROM clock
14	A1	0	Address bus 1 for CPU	64	EPDI	I	EEPROM data input
15	A2	O	Address bus 2 for CPU	65	EPDO	0	EEPROM data output
16	A3	O	Address bus 3 for CPU	66	VDD	-	Power supply
17	VDD	-	Power supply	67	SCLKO	0	Communication clock
18	SYSCLK	-	Non connect	68	S2UDT	1	Communication input data
19	VSS	-	Ground	69	U2SDT	0	Communication output data
20	XI	-	Not use (Connect to vss)	70	CPSCK	0	Clock for ADSC serial
21	XO	-	Non connect	71	P74/SBI1	1	Not use (Pull down)
22	VDD	-	Power supply	72	SDOUT	0	ADSC serial data output
23	OSCI	1	Clock signal input(13.5MHz)	73	-	1	Not use (Pull up)
24	OSCO	0	Clock signal output(13.5MHz)	74	-	1	Not use (Pull up)
25	MODE	1	CPU Mode selection input	75	NMI	I	NMI Terminal
26	A4	O	Address bus 4 for CPU	76	ADSCIRQ	1	Interrupt input of ADSC
27	A5	O	Address bus 5 for CPU	77	ODCIRQ	I	Interrupt input of ODC
28	A6	O	Address bus 6 for CPU	78	DECIRQ	I	Interrupt input of ZIVA
29	A7	O	Address bus 7 for CPU	79	CSSIRQ	I	Not use (Pull down)
30	A8	O	Address bus 8 for CPU	80	ODCIRQ2	I	Interruption of system control
31	A9	O	Address bus 9 for CPU	81	ADSEP	I	Address data selection input
32	A10	O	Address bus 10 for CPU	82	RST	I	Reset input
33	A11	O	Address bus 11 for CPU	83	VDD	-	Power supply
34	VDD	-	Power supply	84	TEST1	1	Test signal 1 input
35	A12	O	Address bus 12 for CPU	85	TEST2	I	Test signal 2 input
36	A13	O	Address bus 13 for CPU	86	TEST3	I	Test signal 3 input
37	A14	0	Address bus 14 for CPU	87	TEST4	1	Test signal 4 input
38	A15	O	Address bus 15 for CPU	88	TEST5	1	Test signal 5 input
39	A16	O	Address bus 16 for CPU	89	TEST6	I	Test signal 6 input
40	A17	0	Address bus 17 for CPU	90	TEST7	1	Test signal 7 input
41	A18	0	Address bus 18 for CPU	91	TEST8	1	Test signal 8 input
42	A19	O	Address bus 19 for CPU	92	VSS	-	Ground
43	VSS	-	Ground	93	D0	I/O	Data bus 0 of CPU
44	A20	0	Address bus 20 for CPU	94	D1	I/O	Data bus 1 of CPU
45	TXSEL	O	TX Select	95	D2	I/O	Data bus 2 of CPU
46	TRVSW	1	Detection switch of traverse inside	96	D3	I/O	Data bus 3 of CPU
				97	D4	I/O	Data bus 4 of CPU
47	HUGUP	-	Connect to TP408	98	D5	I/O	Data bus 5 of CPU
48	HFMON	0	HFM Control output to Q103	99	D6	I/O	Data bus 6 of CPU
49	HAGUP	0	Connect to pick-up	100	D7	I/O	Data bus 7 of CPU
50	-	-	Connect to TP407				

MN103S28EGA (IC301) : Super optical disc controller
1.Terminal layout

$176 \sim 133$	
1	132
2	2
44	89
$45 \sim 88$	

2.Block diagram

3.Pin function (1/4)

Pin No.	Symbol	I/O	
1,2	NINT0,1	O	Interruption of system control 0,1
3	VDD3	-	Power supply terminal for I/O(3.3V)
4	VSS	-	Connect to ground
5	NINT2	O	Interruption of system control 2
6	WAITDOC	O	Wait control of system control
7	NMPST	O	Reset of system control (Non connect)
8	DASPST	l	Setting of initial value of DASP signal
$9 \sim 17$	CPUADR17~9	I	System control address
18	VDD18	-	Power supply terminal for I/O (1.8V)
19	VSS	-	Connect to ground
20	DRAMVDD18	-	Power supply terminal for DRAM (1.8V)
21	DRAMVSS	-	Connect to ground for DRAM
$22 \sim 30$	CPUADR8~0	I	System control address
31	VDD3	-	Power supply terminal for I/O (3.3V)
32	VSS	-	Connect to ground
33	DRAMVDD3	-	Power supply terminal for DRAM (3.3V)
34	NCS	I	System control chip select
35	NWR	I	Writing system control

3.Pin function (MN103S28EGA : 2/4)

Pin No.	Symbol	I/O	Description
36	NRD	1	Read signal input from system controller
37~44	CPUDT7~0	1/0	System control data
45	CLKOUT1	-	Non connect
46	MMOD	1	Test mode switch signal
47	NRST	1	System reset
48	MSTPOL	1	Master terminal polarity switch input
49	SCLOCK	-	Non connect
50	SDATA	-	Non connect
51	OFTR	1	Off track signal input
52	BDO	1	Drop out signal input
53~56	PWM1~4	-	Non connect
57	VDD3	-	Power supply terminal for I/O (3.3V)
58	DRAMVDD18	-	Power supply terminal for DRAM (1.8V)
59	DRAMVSS	-	Connect to ground for DRAM
60	VSS	-	Connect to ground
61~64	PWM5~8	-	Non connect
65	TBAL	0	Tracking balance adjustment output
66	FBAL	0	Focus balance adjustment output
67	TRSDRV	0	Traverse drive output
68	SPDRV	0	Spindle drive output
69	FG	I	Motor FG input
70	TILTP	-	Non connect
71	TILT	-	Non connect
72	TILTN	-	Non connect
73	TX	0	Digital output signal
74	DTRD	-	Non connect
75	IDGT	-	Non connect
76	VDD18	-	Power supply terminal for I/O (1.8V)
77	VSS	-	Connect to ground
78	VDD3	-	Power supply terminal for I/O (3.3V)
79	OSCl1	1	Oscillation input 16.9MHz
80	OSCO1	0	Oscillation output 16.9MHz
81	VSS	-	Connect to ground
82	TSTSG	0	Calibration signal
83	VFOSHORT	0	VFO short output
84	JLINE	0	J-line setting output
85	AVSSD	-	Connect to ground for analog circuit
86	ROUT	-	Non connect
87	LOUT	-	Non connect
88	AVDD	-	Power supply terminal for analog circuit (3.3V)
89	VCOF	1	JFVCO control voltage
90	TRCRS	1	Input signal for track cross formation
91	CMPIN	-	Non connect
92	LPFOUT	-	Non connect
93	LPFIN	1	Pull-up to VHALF
94	AVSS	-	Connect to ground for analog circuit
95	HPFOUT	-	Non connect
96	FPFIN	1	HPF input
97	CSLFLT	1	Pull-up to VHALF
98	RFDIF	-	Non connect
99	AVDDC	-	Power supply terminal for analog circuit (3.3V)
100	PLFLT2	1	Connect to capacitor 2 for PLL

XV-S40BK/XV-S42SL/XV-S45GD

 XV-S30BK/XV-E100SL3.Pin function (MN103S28EGA : 3/4)

Pin No.	Symbol	I/O	Description
101	PLFLT1	1	Connect to capacitor 1 for PLL
102	AVSS	-	Connect to ground for analog circuit
103	RVI	1	Connect to resistor for VREF reference current source
104	VREFH	1	Reference voltage input (2.2V)
105	PLPG	-	Non connect
106	VHALF	1	Reference voltage input (1.65V)
107,108	DSLF2,1	1	Connect to capacitor 2,1 for DSL
109	AVDD	-	Power supply terminal for analog circuit (3.3V)
110	NARF	1	Equivalence RF-
111	ARF	1	Equivalence RF+
112	JITOUT	0	Output for jitter signal monitor
113	AVSS	-	Connect to ground for analog circuit
114	DAC0	0	Tracking drive output
115	DAC1	0	Focus drive output
116	AVDD	-	Power supply terminal for analog circuit (3.3V)
117	AD0	1	Focus error input
118	AD1	1	Phase difference/3 beams tracking error
119	AD2	1	AS : Full adder signal
120	AD3	1	RF envelope input
121	AD4	1	DVD laser current control terminal
122	AD5	1	
123	AD6	1	CD laser current control terminal
124	TECAPA	-	Non connect
125	VDD3	-	Power supply terminal for I/O (3.3V)
126	VSS	-	Connect to ground
127	MONIO	-	Connect to TP306
128	MONI1	-	Connect to TP307
129	MONI2	-	Connect to TP308
130	MONI3	-	Connect to TP309
131	NEJECT	I/O	Eject detection
132	NTRYCTL	I/O	Tray close detection
133	NDASP	I/O	ATAPI drive active / slave connect I/O
134	NCS3FX	1	ATAPI host chip select
135	NCS1FX	1	ATAPI host chip select
136,137	DA2	I/O	ATAPI host address 2,0
138	NPDIAG	I/O	ATAPI slave master diagnosis input
139	DA1	I/O	ATAPI host address 1
140	NIOCS16	-	Non connect
141	INTRQ	0	ATAPI host interruption output
142	NDMACK	1	ATAPI host DMA characteristic
143	VDD3	-	Power supply terminal I/O (3.3V)
144	VSS	-	Connect to ground
145	IORDY	-	NOn connect
146	NIORD	I/O	ATAPI host read
147	NIOWR	-	Non connect
148	DMARQ	-	Non connect
149	HDD15	I/O	ATAPI host data 15
150	HDD0	I/O	ATAPI host data 0
151	HDD14	I/O	ATAPI host data 14
152	VDD18	-	Power supply terminal for I/O (1.8V)
153	PO	1	Connect to ground
154	UATASEL	1	Connect to ground

3.Pin function (MN103S28EGA : 4/4)

Pin No.	Symbol	I/O	
155	VSS	-	Connect to ground
156	VDD3	-	Power supply terminal for I/O (3.3V)
157	HDD1	I/O	ATAPI host data 1
158	HDD13	I/O	ATAPI host data 13
159	HDD2	I/O	ATAPI host data 2
160	HDD12	I/O	ATAPI host data 12
161	HDD3	I/O	ATAPI host data 3
162	VDD3	-	Power supply terminal for I/O (3.3V)
163	VSS	-	Connect to ground
164	HDD11	I/O	ATAPI host data 11
165	HDD4	I/O	ATAPI host data 4
166	HDD10	I/O	ATAPI host data 10
167	HDD5	I/O	ATAPI host data 5
168	HDD9	I/O	ATAPI host data 9
169	VDD3	-	Power supply terminal for I/O (3.3V)
170	VSS	-	Connect to ground
$171 \sim 173$	HDD6~8	I/O	ATAPI host data 6~8
174	VDDH	-	Reference power supply for ATAPI (5.0V)
175	NRESET	I	ATAPI host reset input
176	MASTER	I	ATAPI master / slave select

74VHC74MTC-X (IC454) : ZIVA Wait

1.Terminal layout

2.Trouth table

Input				Output		
Function						
	$\overline{\mathrm{PR}}$	D	CK	Q	$\overline{\mathrm{Q}}$	
L	H	X	X	L	H	Clear
H	L	X	X	H	L	Preset
L	L	X	X	H(Note 1)	H(Note 1)	
H	H	L	-	L	H	
H	H	H	-	H	L	
H	H	X	-	Qn	Qn	No change

3. Pin function

Pin No.	Symbol	I/O	Description	Pin No.	Symbol	I/O	Description
1	CLR1	I	Direct clear input 1	8	Q2	O	Output
2	D1	I	Data input 1	9	Q2	O	Output
3	CK1	I	Clock pulse input 1	10	PR2	I	Direct preset input 2
4	PR1	I	Direct preset input 1	11	CK2	I	Click pulse input 2
5	Q1	O	Output	12	D2	I	Data input 2
6	Q1	O	Output	13	CLR2	I	Clock clear input 2
7	GND	-	Connect to ground	14	VCC	-	Power supply

CY24203SC-X (IC571) : MPEG/Audio clock generator with VCXO
1.Pin layout

2.Pin function

Pin No.	Symbol	Description
1	XIN	Reference crystal input
2	VDD	Power supply
3	VCXO	Input analog control for VCXO
4	VSS	Connect to ground
5	16.9344 M	16.9344 MHz clock output
6	13.5	13.5 MHz clock output
7	27 M	27 MHz clock output
8	XOUT	Reference crystal output

■ GP1U271X (IC801) : Receiver for remote

IC-PST9140-T (IC702) : System Reset IC
1.Terminal layout

Output Input GND

MN35505-X (IC703) : DAC
1.Terminal layout

M5	1	28	M6
DIN	2	27	M4
LRCK	3	26	M8
BCK	4	25	M7
M3	5	24	DVDD1
DVDD2	6	23	VCOF
CKO	7	22	XIN
DVSS2	8	21	XOUT
M2	9	20	DVSS1
M1	10	19	M9
OUT1C	11	18	OUT2C
AVDD1	12	17	AVDD2
OUT1D	13	16	OUT2D
AVSS1	14	15	AVSS2

2. Pin function

Pin No.	Symbol	I/O	
1	M5	I	Control signal for DAC
2	DIN	I	Digital data input
3	LRCK	I	L and R clock for DAC
4	BCK	I	Bit clock for DAC
5	M3	I	Control signal for DAC
6	DVDD2	-	Power supply terminal
7	CKO	-	Non connect
8	DVSS2	-	Connect to ground
9	M2	I	Control signal for DAC
10	M1	I	Control signal for DAC
11	OUT1C	O	Analog output 1
12	AVDD1	-	Power supply terminal
13	OUT1D	O	Analog output 1
14	AVSS1	-	Connect to ground
15	AVSS2	-	Connect to ground
16	OUT2D	O	Analog output 2
17	AVDD2	-	Power supply terminal
18	OUT2C	O	Analog output 2
19	M9	I	Control signal for DAC
20	DVSS1	-	Connect to ground
21	XOUT	-	Non connect
22	XIN	-	Non connect
23	VCOF	I	VCO Frequency
24	DVDD1	-	Power supply D+5V
25	M7	-	Connect to ground
26	M8	-	Connect to ground
27	M4	I	Control signal for DAC
28	M6	I	Clock for control signal

MR27V1602E1UTPX (IC402) :P2 ROM of 1,048,576word x 16 bit / 2,097,152 word $x 8$ bit
1.Pin layout

$$
\begin{aligned}
& \text { D }
\end{aligned}
$$

岁
2.Block diagram

3.Pin functions

Symbol	Function
A0 - A20	Address Input
D0 - D14	Data Output
CE	Chip Enable
OE	Output Enable
BYTE	Mode Switch
Vcc	Power Supply
Vss	GND
WE	Write enable
WP	Connect to ground

■ NJM4580M-X (IC741,IC751) : Dual OP amplifier
Block diagram

NJM78M05FA (IC953) : Regulator
1.Terminal layout

123
2.Block diagram

■ PQ05RD21 (IC951) : Regulator
1.Terminal layout

2.Block diagram

■ S-93C66AFJ-X (IC451) : EEPROM
1.Pin layout

2.Pin function

Pin No.	Symbol	I/O	Description
1	PE	-	Non connect
2	VCC	-	Power supply terminal
3	CS	I	Chip select input
4	SK	I	Serial clock input
5	DI	I	Serial data input
6	DO	O	Serial data output
7	GND	-	Connect to ground
8	NC	-	Non connect

1.Block diagram

STR-G6651 (IC901) : Switch regulator

ZIVA-4.1-PA2(IC501):Back end - Digital decoder

1.Terminal layout

$208 \sim 157$	
1	156
2	2
52	105
$53 \sim 104$	

2.Pin function (1/5)

Pin No.	Symbol	I/O	Description
1	RD	I	Read strobe input
2	R/W	I	Read/write strobe input
3	VDD	-	Power supply terminal 3.3V
4	WAIT	O	Transfer not complete / data acknowledge. Active LOW to indicate host initiated transfer is complete.
5	RESET	I	Active LOW : reset signal input
6	VSS	-	Connect to ground
7	VDD	-	Power supply terminal 3.3V
8	INT	O	Host interrupt signal output
9	NC	-	Non connect
10	NC	-	Non connect
11	NC	-	Non connect
12	NC	-	Non connect
13	VDD	-	Power supply terminal 2.5V
14	VSS	-	Connect to ground
15	NC	-	Non connect
16	NC	-	Non connect
17	NC	-	Non connect
18	NC	-	Non connect
19	VSS	-	Connect to ground
20	VDD	-	Power supply 3.3V
21	VDATA0	0	Video data bus output. Byte serial CbYCrY data synchronous with VCLK.
22	VDATA1	0	Video data bus output. Byte serial CbYCrY data synchronous with VCLK.
23	VDATA2	0	Video data bus output. Byte serial CbYCrY data synchronous with VCLK.
24	VDATA3	O	Video data bus output. Byte serial CbYCrY data synchronous with VCLK.
25	VDATA4	0	Video data bus output. Byte serial CbYCrY data synchronous with VCLK.
26	VDATA5	0	Video data bus output. Byte serial CbYCrY data synchronous with VCLK.
27	VDATA6	O	Video data bus output. Byte serial CbYCrY data synchronous with VCLK.
28	VDATA7	0	Video data bus output. Byte serial CbYCrY data synchronous with VCLK.
29	VSYNC	I/O	Vertical sync. Bi-directional, the decoder output the top border of a new field on the first HSYNC after the falling edge of VSYNC.
30	HSYNC	I/O	Horizontal sync. The decoder begins outputting pixel data for a new horizontal line after the falling (active) edge of HSYNC.
31	VSS	-	Connect to ground
32	VDD	-	Power supply terminal 3.3V
33	NC	-	Non connect
34	NC	-	Non connect
35	NC	-	Non connect
36	VDD	-	Power supply terminal 2.5V

XV-S40BK/XV-S42SL/XV-S45GD

 XV-S30BK/XV-E100SL2.Pin function (ZIVA-4.1-PA2 : 2/5)

Pin No.	Symbol	I/O	Description
37	VSS	-	Connect to ground
38	NC	-	Non connect
39	NC	-	Non connect
40	NC	-	Non connect
41	NC	-	Non connect
42	NC	-	Non connect
43	PIOO	I/O	Programmable I/O terminal
44	VSS	-	Connect to ground
45	VDD	-	Power supply terminal 3.3V
46	PIO1	I/O	Programmable I/O terminal
47	PIO2	I/O	Programmable I/O terminal
48	PIO3	I/O	Programmable I/O terminal
49	PIO4	I/O	Programmable I/O terminal
50	PIO5	I/O	Programmable I/O terminal
51	PIO6	I/O	Programmable I/O terminal
52	PIO7	I/O	Programmable I/O terminal
53	MDATA0	I/O	SDRAM data
54	MDATA1	I/O	SDRAM data
55	VDD	-	Power supply terminal 3.3V
56	VSS	-	Connect to ground
57	MDATA2	I/O	SDRAM data
58	MDATA3	I/O	SDRAM data
59	MDATA4	I/O	SDRAM data
60	MDATA5	I/O	SDRAM data
61	MDATA6	I/O	SDRAM data
62	MDATA7	I/O	SDRAM data
63	MDATA15	I/O	SDRAM data
64	VDD	-	Power supply terminal 3.3V
65	VSS	-	Connect to ground
66	MDATA14	I/O	SDRAM data
67	VDD	-	Power supply terminal 2.5
68	VSS	-	Connect to ground
69	MDATA13	I/O	SDRAM data
70	MDATA12	I/O	SDRAM data
71	MDATA11	I/O	SDRAM data
72	MDATA10	I/O	SDRAM data
73	MDATA9	I/O	SDRAM data
74	VDD	-	Power supply terminal 3.3V
75	VSS	-	Connect to ground
76	MDATA8	I/O	SDRAM data
77	LDQM	0	SDRAM Lower or upper mask
78	SD-CLK	0	SDRAM Clock
79	CLKSEL	I	Selects SYSCLK or VCLK as clock source. Normal operation is to tie HIGH.
80	MADDR9	0	SDRAM address
81	MADDR8	0	SDRAM address
82	VDD	-	Power supply terminal 3.3V
83	VSS	-	Connect to ground
84	MADDR7	0	SDRAM address

2.Pin function (ZIVA-4.1-PA2 : 3/5)

Pin No.	Symbol	I/O	Description
85	MADDR6	0	SDRAM address
86	MADDR5	0	SDRAM address
87	VDD	-	Power supply terminal 2.5 V
88	VSS	-	Connect to ground
89	MADDR4	0	SDRAM address
90	MWE	0	SDRAM write enable
91	SD-CAS	0	Active LOW SDRAM column address
92	VDD	-	Power supply terminal 3.3V
93	VSS	-	Connect to ground
94	SD-RAS	0	Active LOW SDRAM row address
95	SD-CSO	0	Active LOW SDRAM chip select 0
96	SD-CS1/MADDR11	0	Active LOW SDRAM chip select 1 or use as MADDR11 for larger SDRAM
97	SD-BS	0	SDRAM bank select
98	MADDR10	0	SDRAM address
99	MADDR0	0	SDRAM address
100	VDD	-	Power supply terminal 3.3V
101	VSS	-	Connect to ground
102	MADDR1	0	SDRAM address
103	MADDR2	0	SDRAM address
104	MADDR3	0	SDRAM address
105	RESERVED	1	Tie to VSS or VDD_3.3 as specified in table1
106	NC	-	Non connect
107	NC	-	Non connect
108	RESERVED	1	Tie to VSS or VDD_3.3 as specified in table1
109	NC	-	Non connect
110	RESERVED	I	Tie to VSS or VDD_3.3 as specified in table1
111	RESERVED	I	Tie to VSS or VDD_3.3 as specified in table1
112	RESERVED	1	Tie to VSS or VDD_3.3 as specified in table1
113	DAI-LRCK	1	PCM left/right clock
114	DAI-BCK	1	PCM input bit clock
115	VDD	-	Power supply 3.3V
116	VSS	-	Connect to ground
117	DAI-DATA	1	PCM data input
118	DA-DATA3	0	PCM data output. Eight channels. Serial audio samples relative to DA_BCK and DA_LRCK
119	DA-DATA2	0	PCM data output. Eight channels. Serial audio samples relative to DA_BCK and DA_LRCK
120	DA-DATA1	0	PCM data output. Eight channels. Serial audio samples relative to DA_BCK and DA_LRCK
121	DA-DATAO	0	PCM data output. Eight channels. Serial audio samples relative to DA BCK and DA LRCK
122	DA-LRCK	0	PCM left clock. Identifies the channel for each sample
123	VDD	-	Power supply terminal 3.3V
124	VSS	-	Connect to ground
125	DA-XCK	I/O	Audio external frequency clock input or output
126	DA-BCK	O	PCM bit clock output
127	DA-IEC	0	PCM data out in IEC-958 format or compressed data out in IEC-1937 format
128	VDD	-	Power supply terminal 2.5 V

XV-S30BK/XV-E100SL

2.Pin function (ZIVA-4.1-PA2 : 4/5)

Pin No.	Symbol	I/O	Description
129	VSS	-	Connect to ground
130	NC	-	Non connect
131	VSS_DAC	-	Connect to ground for analog video DAC
132	VSS_VIDEO	-	Connect to ground for analog video
133	CVBS	0	DAC video output format : CVBS. Macrovision encoded
134	VDD_DAC	-	Power supply terminal for analog video DAC
135	VDD_VIDEO	-	Power supply terminal for analog video
136	NC	-	Non connect
137	VSS_DAC	-	Connect to ground for analog video DAC
138	VSS_VIDEO	-	Connect to ground for analog video
139	CVBS/G/Y	O	DAC video output format. Macrovision encoded
140	VDD_DAC	-	Power supply terminal for analog video DAC
141	VDD_VIDEO	-	Power supply terminal for analog video
142	NC	-	Non connect
143	VSS_DAC	-	Connect to ground for analog video DAC
144	VSS_VIDEO	-	Connect to ground for analog video
145	Y/B/U	O	DAC video output format. Macrovision encoded
146	VDD_DAC	-	Power supply terminal for analog video DAC
147	VDD_VIDEO	-	Power supply terminal for analog video
148	NC	-	Non connect
149	VSS_DAC	-	Connect to ground for analog video DAC
150	VSS_VIDEO	-	Connect to ground for analog video
151	C/R/V	O	DAC video output format. Macrovision encoded
152	VDD_DAC	-	Power supply terminal for analog video DAC
153	VDD_VIDEO	-	Power supply terminal for analog video
154	VSS_RREF	-	Connect to ground for analog video
155	RREF	0	Reference resistor. Connecting to pin 154
156	VDD_RREF	-	Power supply terminal for analog video 3.3V
157	A_VSS	-	Power supply terminal for analog PLL 3.3V
158	SYSCLK	1	Optical system clock. Tie to A_VDD through a 1 K ohm resistor
159	VCLK	1	System clock input
160	A_VDD	-	Power supply terminal for analog PLL 3.3V
161	DVD-DATAO/CD-DATA	1	Serial CD data. This pin is shared with DVD compressed data DVD-DATA0
162	DVD-DATA1/CD-LRC	1	Programmable polarity 16 -bit word synchronization to the decoder. This pin is shared with DVD compressed data DVD-DATA1
163	DVD-DATA2/CD-BCK	1	CD bit clock. Decoder accept multiple BCK rates. This pin is shared with DVD compressed DVD-DATA2
164	DVD-DATA3/CD-C2PO	1	Asserted HIGH indicates a corrupted byte. This pin is shared with DVD compressed data DVD-DATA3
165	DVD-DATA4/CDGSDATA	1	DVD parallel compressed data from DVD DSP. or CD-G data indicating serial subcode data input
166	VSS	-	Connect to ground
167	VDD	-	Power supply terminal 3.3V
168	DVD-DATA5/CDG-VFSY	1	DVD parallel compressed data from DVD DSP. or CD-G frame sync indicating frame-start or composite synchronization input.
169	DVD-DATA6/CDG-SOS1	1	DVD parallel compressed data from DVD DSP. or CD-G block sync indicating block-start synchronization input

2.Pin function (ZIVA-4.1-PA2 : 5/5)

Pin No.	Symbol	I/O	Description
170	DVD-DATA7/CDG-SCLK	1	DVD parallel compressed data from DVD DSP. or CD-G clock indicating sub code data clock input or output
171	VDACK	1	In synchronous mode, bitstream data acknowledge. Asserted when DVD data is valid.Polarity is programmable
172	VREQUEST	0	Bitstream request
173	VSTROBE	1	Bitstream strobe
174	ERROR	1	Error in input data
175	VDD	-	Power supply terminal 3.3V
176	RESERVED	1	Tie to VSS or VDD_3.3 as specified in table 1
177	VDD	-	Power supply terminal 3.3 V
178	VSS	-	Connect to ground
179	NC	-	Non connect
180	RESERVED	1	Tie to VSS or VDD_3.3 as specified in table 1
181	NC	-	Non connect
182	HADDR0	1	Host addressbus. 3-bit address bus selects one of eight host interface registers
183	HADDR1	1	Host addressbus. 3-bit address bus selects one of eight host interface registers
184	HADDR2	1	Host addressbus. 3-bit address bus selects one of eight host interface registers
185	RESERVED	1	Tie to VSS or VDD_3.3 as specified in table 1
186	RESERVED	1	Tie to VSS or VDD_3.3 as specified in table 1
187	RESERVED	1	Tie to VSS or VDD_3.3 as specified in table 1
188	VSS	-	Connect to ground
189	VDD	-	Power supply terminal 2.5 V
190	RESERVED	1	Tie to VSS or VDD_3.3 as specified in table 1
191	VSS	-	Connect to ground
192	VDD	-	Power supply terminal 3.3V
193	RESERVED	1	Tie to VSS or VDD_3.3 as specified in table 1
194	RESERVED	I	Tie to VSS or VDD_3.3 as specified in table 1
195	RESERVED	1	Tie to VSS or VDD_3.3 as specified in table 1
196	RESERVED	1	Tie to VSS or VDD_3.3 as specified in table 1
197	HDATA7	I/O	The 8-bit bi-derectional host data through which the host writes data to the decoder code.
198	VSS	-	Connect to ground
199	HDATA6	I/O	The 8-bit bi-derectional host data through which the host writes data to the decoder code.
200	HDATA5	I/O	The 8-bit bi-derectional host data through which the host writes data to the decoder code.
201	HDATA4	I/O	The 8-bit bi-derectional host data through which the host writes data to the decoder code.
202	HDATA3	I/O	The 8-bit bi-derectional host data through which the host writes data to the decoder code.
203	HDATA2	I/O	The 8-bit bi-derectional host data through which the host writes data to the decoder code.
204	VDD	-	Power supply terminal 3.3V
205	VSS	-	Connect to ground
206	HDATA1	I/O	The 8-bit bi-derectional host data through which the host writes data to the decoder code.
207	HDATAO	I/O	The 8-bit bi-derectional host data through which the host writes data to the decoder code.
208	CS	1	Host chip select input

XV-S40BK/XV-S42SL XV-S45GD/XV-S30BK XV-E100SL

VICTOR COMPANY OF JAPAN, LIMITED
PERSONAL \& MOBILE NETWORK BUSINESS UNIT
1644, Shimotsuruma, Yamato, Kanagawa 242-8514, Japan

[^0]: In regard with component parts appearing on the silk-screen printed side (parts side) of the PWB diagrams, the parts that are printed over with black such as the resistor ($\boldsymbol{\square}$), diode ($\boldsymbol{\square}$) and ICP (\boldsymbol{O}) or identified by the " \triangle " mark nearby are critical for safety.
 When replacing them, be sure to use the parts of the same type and rating as specified by the manufacturer. (Except the J and C version)

[^1]: 3.Two places in hook \mathbf{b} are removed, the servo control board is lifted, and it is removed.

